The INGENIOUS Study: Understanding air pollution in homes

Prof Nicola Carslaw University of York

The INGENIOUS study: understanding air pollution in homes

Nicola Carslaw (and the INGENIOUS Team)

Department of Environment and Geography

University of York

Scottish Air Quality Seminar, 2025

UnderstandING the sourcEs, traNsformations and fates of IndOor air pollUtantS: INGENIOUS

The overarching aims are to:

- Undertake the first comprehensive mapping exercise of the main sources, transformations and fate
 of air pollutants in typical UK residences
- Identify inequalities in exposure and the consequent impacts on health amongst diverse population
- Identify the physical, social and behavioural factors that control pollutant distribution
- Co-design novel, scalable interventions to improve air quality and health.

borninbradford

- Longitudinal birth cohort, exploring why some families stay healthy and others fall ill
- 12,500 Mums recruited between 2007-2011: oldest children now 18
- Works with decision makers to translate evidence into practice: improve lives of families in Bradford and beyond
- People powered: coproduction with communities and stakeholder underpins all activities.

INGENIOUS Workpackages

View Article Online View Journal | View Issue

Check for updates

PAPER

Cite this: Environ. Sci.: Processes Impacts, 2025, 27, 355

Nicola Carslaw, [©] ** Jennifer Aghaji,^b Sri Hapsari Budisulistiorini, [©] ^c David C. Carslaw,^c Lia Chatzidiakou, [©] ^d Rachael W. Cheung,^{eff} Terry J. Dillon,^c Pete Edwards,^c Denisa Genes,⁹ Chiara Giorio, [©] ^d Jacqueline F. Hamilton,^e Erika Ikeda,¹ Roderic L. Jones,^d James Lee, [©] ^d Alastair C. Lewis, [©] ^c Ashish Kumar, [©] ^c Rosemary McEachan,th Gordon McFiggans,¹ Tim Murrels,^k Nicholas Pleace,¹ Athina Ruangkanit,^{ef} Yungi Shao,¹ Simon P. O'Meara, [©] ¹ David R. Shaw, [©] ^a Marvin Shaw,^d Dagmar Waiblinger, [©] ¹ Tom Warburon, [©] ^d Sarah West,^b Chantelle Wood [®] ⁹ and Tiffany Yangth

The INGENIOUS project: towards understanding air

pollution in homes†

Testing facilities at York

Products tested

Table 2 A detailed breakdown of the emissions measurements carried out as part of WP1 and classified into cooking, cleaning or home scented product use

Cooking		Cleaning		Home scented products	
Frying in oils	Number of experiments	Product class ^a	Number of experiments	Product class	Number of experiments
Rapeseed oil	1	Surface cleaners	10	Electrical plug-in diffusers	8
Sunflower oil	1	Bathroom cleaners	5	Essential oil mist diffusers	7
Olive oil	1	Floor cleaners	3	Reed diffuser	1
Groundnut oil	1	Bleach	7	Bathroom freshener (gel)	1
Coconut oil	1	Window cleaner	1	Bathroom freshener (liquid)	1
Ghee	1	Total	26	Room spray (aerosol)	4
Total	6			Wax melts	8
				Scented candle	1
Full recipes	Number of experiments			Bakhoor	3
Beef chilli	6			Frankincense	2
Non-meat chilli	7			Incense stick	3
Chicken stir-fry	6			Total	39
Tofu stir-fry	7				
Chicken curry	7				
Paneer curry	6				
Total	39				

^{*a*} All the cleaning products tested in this study were considered to be fragrant based on the manufacturer's label information indicating the presence of "parfume/perfume" in the formulation.

Cooking experiments

- Standardised 6 recipes
- Used same pan and same induction hob
- Heat setting varied according to the recipe
- Same set of ingredients used in each cook (from same shop)
- Cooking time 12-26 min.

- Continuous VOC measurement using SIFT-MS
- 1 whole air canister per recipe for GC-MS analysis
- Periodic Indoor and outdoor air measurements of VOC, CO₂, CH₄ NO, NO_x, SO₂ and O₃.

Chicken stir-fry emissions

Fig. 4 Mixing ratios of aldehydes (top left panel), alkanes (top right panel), terpenes (bottom left panel), and alcohols (bottom right panel) measured using the SIFT-MS during the cooking of chicken stir-fry. The grey-shaded region shows the cooking duration and time T_0 represents the start of the cooking (when the oil is first added to the heated pan). The data shown is the averaged data of six cooking experiments.

VOC emissions from different recipes

- Alcohols dominated emissions
- Curries produced more carbonyls, monoterpenes and organic acids than other meals
- How do we represent these emissions in NAEI?

WP2: Measurements in residences

Sampling locations

Spatial distribution of INGENIOUS households by postcode district and locations of the outdoor monitoring stations of the outdoor sensor network

Recruitment & Procedure

Home Visit 2

(Day 11)

Participant Expresses Interest

- Researcher calls participant to explain study & assess eligibility
- Researcher obtains informed consent

Home Visit 1

(Day 1)

- Home survey is administered
- Building audit is performed
- Sensors are installed

- VOC & PM measurements are installed
- Health & behaviour questionnaire is administered

Home Visit 3

(Day 14)

- Sensors & VOC & PM measurements are removed
- Interviews are conducted

 Participant receives feedback on indoor/outdoor air pollution

Personalised

Feedback

 Participant has opportunities to ask any questions

2-week monitoring

- Sensors collect data
- Participant completes daily diary

72-hour monitoring

VOC & PM measurements collect data

WP2: Participants

• 321 households have been recruited via BiB Growing Up cohort

			Ethnicity	
		South Asian	White (British)	Other
		(47%)	(40%)	(11%)
Housing tenure	Private/mortgaged property (70%)	N=95 (asthma: N=48; non- asthma: N=47)	N=95 (asthma: N=48; non- asthma: N=47)	N=21 (asthma: N=10; non- asthma: N=11)
	Rented property (30%)	N=40 (asthma: N=20; non- asthma: N=20)	N=40 (asthma: N=20; non- asthma: N=20)	N=9 (asthma: N=5; non-asthma: N=4)

Sampling equipment in situ

Example of 2-week collection period, March-April 2023

Fuel poverty???

Large variability between households

Diary information

Summary of LCS data in 310 homes in Bradford

- Variability between houses > seasonal differences
- Very low internal T for significant minority
- More variability in pollutant concentrations
 than environmental parameters
- Human behaviour largely drives IAQ

Simulations of PM

- Wide variability in indoor measurements: behaviour is key
- Outdoor AQ only influenced IAQ in absence of activities
- Very high PM_{2.5} concentrations (cf. WHO) in kitchens and high CO₂ in bedrooms
 - differential toxicity (HIPTOX)?
 - long term exposure to lower concentrations vs short-term exposure to higher concentrations?
- Low internal temperatures
 - fuel poverty
 - damp
- Implications for Net Zero policies??